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Velocity and Structure Estimation of a Moving Object Using a Moving
Monocular Camera

V. K. Chitrakaran†, D. M. Dawson, J. Chen, and H. Kannan

Abstract— In this paper, we present the development of
a vision-based estimator for simultaneous determination of
velocity and structure of an object (i.e., the Euclidean position of
its feature points) for the general case where both the object and
the camera are moving relative to an inertial frame of reference.
The velocity estimation itself requires no explicit kinematic
model, while the adaptive structure estimator, synthesized
utilizing Lyapunov design methods, is built upon kinematic
relationships that rely on homography-based techniques.

I. INTRODUCTION

The application of a camera as a sensor for acquiring
the 3D structure of a scene is known as “Structure from
Motion (SfM)” in the computer vision literature [17]. The
problem usually involves a camera mounted on a moving
platform such as a mobile robot whose image data is
utilized to map the Euclidean position of static landmarks
or visual features in the environment. Recent applications
of this technique include aerial surveillance and mapping
systems such as the work presented in [10] and [12]. A
significant extension to the above problem is the case where
both the object of interest and the camera are in motion,
with potential impact on such applications as vision-based
collision avoidance systems for autonomous guidance of
multiple vehicles on highways [9]. In this paper, we propose
a nonlinear estimation strategy to identify the Euclidean
structure and velocity of a moving object using a monocular
calibrated moving camera. The proposed algorithm relies on
the availability of a reference image of the target object,
captured at a known orientation relative to the camera. For
the general case where both the camera and the object are
in motion relative to an inertial frame, a single geometric
length on the object is assumed to be known, and sensors
mounted on the camera are assumed to provide camera
velocity information. Typically, linearization based methods
such as extended Kalman filtering [1], [5], [17] provide
the underlying algorithmic foundation for most SfM results,
although the problem of estimating 3D information from 2D
images is inherently nonlinear. In this work, we approach the
problem using nonlinear system analysis tools. Equations for
motion kinematics are first developed in terms of Euclid-
ean and image-space information based on the approach
presented in [16]. An integral feedback estimation method

This work was supported in part by two DOC Grants, an ARO Auto-
motive Center Grant, a DOE Contract, a Honda Corporation Grant, and a
DARPA Contract.

The authors are with the Dept. of Electrical & Computer Engineering,
Clemson University, SC, USA.

†Corresponding Author: Phone/Fax: (864) 656-7708/(864) 656-7218,
Email: cvilas@ces.clemson.edu

introduced in [4] is then employed to identify the linear
and angular velocity of the moving object. The estimated
velocities facilitate the development of a measurable error
system that can be used to formulate a nonlinear least squares
adaptive update law for Euclidean structure estimation. Then,
the satisfaction of a persistent excitation condition (similar
to [2] and others) allows the determination of the coordinates
for all the feature points on the object relative to the camera.

Although the requirement of velocity sensors on the cam-
era might seem too restrictive at first, the proposed algorithm
does allow for some interesting applications. For example, a
camera on-board an aerial reconnaissance vehicle could be
employed to track and estimate the dimensions of ground
targets (such as moving vehicles) utilizing a single snapshot
as the reference image captured, for example, by a satellite.
In this case, the camera velocity information can be obtained
from the Inertial Navigation system on-board the aircraft.
Similarly, a pan-tilt camera could be employed as a passive
radar for pose and velocity recovery of a rigid moving object
in its field of view. The fact that camera motion is allowed
frees the moving object from any restrictive assumptions on
its trajectory, as the camera orientation can be continuously
updated in order to keep the object within its field of view.
A system based on this technique could also be applied in
the microscopic domain: a camera equipped with magnifying
lenses mapping structure and motion of objects too small to
have motion sensors embedded on them.

The remainder of this paper is organized as follows. In
Section II, we begin with the development of a geometric
model and homography relating the pixel coordinates of
visual markers on the object, extracted from the reference
image and the continuous sequence of images from the
camera. Section III describes the motion kinematics between
the camera and the target object. This is followed by the
development of estimators for relative velocity and Euclidean
position in Sections IV and V, respectively. A Lyapunov
stability analysis for Euclidean position estimation is pro-
vided in Section V-A. In Appendix II, we illustrate the cases
where either the object or the camera is stationary relative
to the inertial frame. These special cases add to the range
of practical applications of this algorithm, especially since
some of assumptions necessary for the general case can be
relaxed. Specifically, no velocity sensors on the camera are
required for the special cases.

II. GEOMETRIC MODEL

We begin the development of a geometric model relating
the camera and the object by introducing some notation.
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Fig. 1. The geometry of the camera frame and the object frame relative
to the inertial frame.

In Figure 1, the inertial, camera and the object frames are
denoted by the orthogonal coordinate frames I, C, and O,
respectively. For the sake of simplicity, it is assumed that
the origin of C coincides with the optical center of the
camera. The vector xc(t) ∈ R

3 and the matrix Rc(t) ∈
SO(3) denote the position and orientation, respectively, of
the camera relative to the inertial frame I, and expressed in
the coordinates of I, such that Rc(t) defines the mapping
Rc : C → I. Similarly, the position and orientation of the
object frame relative to the inertial frame are quantified by
xo(t) ∈ R

3 and Ro(t) ∈ SO(3), respectively, where Ro(t)
is the mapping Ro : O → I. We also define the quantities
xco(t) ∈ R

3 and Rco(t) ∈ SO(3) to be the position and
orientation of the object frame relative to the camera frame,
and expressed in the camera frame C, such that Rco : O → C.
The three dimensional structure of a rigid object in the field
of view of the camera is described in terms of the 3D location
of various visual features on the object relative to the camera
frame. If the Euclidean coordinates of the i th feature point
Oi on the object is denoted by the constant s i ∈ R

3 in the
object frame O, and m̄i(t) �

[
m̄ix m̄iy m̄iz

]T ∈ R
3

in the camera frame C, then, it can be seen from Figure 1
that,

m̄i = xco + Rcosi. (1)

We now develop a geometric relationship that describes
how the image coordinates of a feature point on the object
change with relative motion between the camera and the
object. To this end, we define a reference position of the
object relative to the camera, denoted by O∗ in Figure 1.
At this reference location relative to the camera, the position
and orientation of O∗, and the Euclidean coordinates of the
feature points relative to the camera frame, are denoted by
the constant terms x∗

co ∈ R
3, R∗

co ∈ SO(3) and m̄∗
i ∈ R

3,
respectively. Hence, similar to (1), we have

m̄∗
i = x∗

co + R∗
cosi. (2)

After solving (2) for si and then substituting the resulting
expression into (1), we have

m̄i = x̄ + R̄m̄∗
i (3)

where R̄ (t) ∈ SO (3) and x̄ (t) ∈ R
3 are new rotational and

translational variables, respectively, defined as follows

R̄ = Rco (R∗
co)

T
, x̄ = xco − R̄x∗

co . (4)

Let three of the non-collinear feature points on the object,
denoted by Oi ∀i = 1, 2, 3, define the plane π in frame
O, and π∗ in O∗. As illustrated in Figure 1, n∗ ∈ R

3

denotes the constant normal to the plane π∗ expressed in the
coordinates of C, and the constant projections of m̄∗

i along
the unit normal n∗, denoted by d∗

i ∈ R, are given by

d∗i = n∗T m̄∗
i . (5)

Using (5), it can be easily seen that the relationship in
equation (3) can now be expressed as follows

m̄i =
(

R̄ +
1
d∗i

x̄n∗T

)
︸ ︷︷ ︸ m̄∗

i

H

(6)

where H(t) ∈ R
3×3 denotes a Euclidean homography [14].

To express the above relationship in terms of the measurable
image space coordinates of the visual features relative to
the camera frame, the normalized Euclidean coordinates
mi(t), m∗

i ∈ R
3 are defined as follows

mi � m̄i

m̄iz
, m∗

i � m̄∗
i

m̄∗
iz

. (7)

The image coordinates of these feature points expressed
relative to C are denoted by pi(t), p∗i ∈ R

3 as follows

pi =
[

ui vi 1
]T

, p∗i =
[

u∗
i v∗i 1

]T . (8)

The image coordinates and the normalized Euclidean coor-
dinates are related by the pin-hole camera model [15] such
that

pi = Ami, p∗i = Am∗
i (9)

where A ∈ R
3×3 is a known, constant, upper triangular

and invertible intrinsic camera calibration matrix. From (6)
and (9), the relationship between image coordinates of the
corresponding feature points in O and O∗ can be expressed
as follows

pi =
m̄∗

iz

m̄iz︸︷︷︸ A
(
R̄ + x̄hi(n∗)T

)
A−1︸ ︷︷ ︸ p∗i

αi G

(10)

where αi ∈ R denotes the depth ratio, and x̄hi(t) =
x̄(t)
d∗i

∈ R
3 denotes the scaled translation vector. The matrix

G(t) ∈ R
3×3 defined in (10) is a full rank homogeneous

collineation matrix defined up to a scale factor [15]. If the
structure of the object is planar, all feature points lie on the
same plane, and hence the distances d∗

i defined in (5) is the
same for all feature points, henceforth, denoted as d∗. In



this case, the collineation G(t) is defined up to the same
scale factor, and hence, one of its elements can be set to
unity without loss of generality. Given a reference image of
the object corresponding to O∗, and a continuous stream of
images of the object from the camera corresponding to O
at every instant of time, G(t) can be estimated from a set
of linear equations (10) obtained from at least four matched
feature points (pi(t), p∗i ) that are coplanar but non-collinear.
If the structure of the object is not planar, the Virtual Parallax
method described in [15] could be utilized, where three of
the non-collinear feature points on the object are utilized to
define a virtual plane at the distance d∗ from the camera..
An overview of the determination of the collineation matrix
G(t) and the depth ratios αi(t) for both the planar and non-
planar cases are also given in [3]. Based on the fact that
the intrinsic camera calibration A is known apriori, we can
then determine the Euclidean homography H(t). By utilizing
various techniques (see algorithms in [8], [14], [21]), H(t)
can be decomposed into its constituent rotation matrix R̄(t),

unit normal vector n∗, scaled translation vector x̄h(t) � x̄(t)
d∗

and the depth ratio αi(t). It is assumed that the constant
rotation matrix R∗

co is known. Rco(t) can therefore be
computed from (4). Hence Rco(t), R̄(t), x̄h(t) and αi(t) are
known signals that can be used in the subsequent analysis.

Remark 1: The subsequent development requires that the
constant rotation matrix R∗

co be known. We consider this to
be a mild assumption since the reference image of the object
can be acquired offline after placing the object or the camera
at some known orientation relative to each other.

III. KINEMATICS

Let vc(t), ωc(t) ∈ R
3 denote the translational and rota-

tional velocities of the camera, relative to I and expressed in
the coordinates of I. In the coordinates of C, the same physi-
cal quantities relative to I are denoted as vcc(t), ωcc(t) ∈ R

3.
Similarly, vo(t), ωo(t) ∈ R

3 and voo(t), ωoo(t) ∈ R
3 denote

the translational and rotational velocities of the object frame,
all relative to I, expressed in the coordinates of I and O,
respectively. These velocities are related to each other in the
following manner,[

vT
cc ωT

cc

]T
= RT

c

[
vT

c ωT
c

]T
, (11)[

vT
oo ωT

oo

]T = RT
o

[
vT

o ωT
o

]T
. (12)

To quantify the translation between the coordinate frames
O∗ and O, we define ev(t) ∈ R

3 in terms of the image
coordinates of one of the feature points on the plane π. For
notational simplicity, we chose O1 and hence,

ev �
[

u1 − u∗
1 v1 − v∗1 − ln(α1)

]T
. (13)

The signal ev(t) is measurable since the first two elements of
the vector are obtained from the images and the last element
is available from known signals as discussed in the previous
section. After taking the time derivative of (13), the following
translational kinematics can be obtained (see Appendix I for

details)

ėv =
α1

m̄∗
1z

Ae1 [S(xco)ωcc − Rcovr + RcoS(s1)ωr] (14)

where S(·) ∈ R
3×3 denotes the skew-symmetric form of

the vector s1 as defined in [19], and vr(t), ωr(t) ∈ R
3 are

the relative translational and rotational velocities between the
camera and the object defined in the following manner

vr = RT
o (vc − vo) , ωr = RT

o (ωc − ωo) . (15)

In (14), Aei(t) ∈ R
3×3 is a function of the camera intrinsic

calibration parameters and image coordinates of the i th

feature point as shown below

Aei � A −
⎡
⎣ 0 0 ui

0 0 vi

0 0 0

⎤
⎦ . (16)

Similarly, to quantify the rotation between O∗ and O, we
define eω(t) ∈ R

3 using the axis-angle representation [19]
as follows

eω � µφ (17)

where µ(t) ∈ R
3 represents a unit rotation axis, and φ(t) ∈ R

denotes the rotation angle about µ(t) confined to the region
−π < φ(t) < π, and defined as follows

φ = cos−1

(
1
2

(
tr(R̄) − 1

))
, S (µ) =

R̄ − R̄T

2 sin(φ)
.

(18)
In (18), the notation tr (·) denotes the trace of a matrix. After
taking the time derivative of (17), the following expression
for rotational kinematics is obtained (see Appendix I for
details)

ėω = −LωRcoωr (19)

where the Jacobian-like term Lω(t) ∈ R
3×3 is given by the

following expression

Lω = I3 − φ

2
S (µ) +

⎛
⎜⎜⎝1 − sinc (φ)

sinc2

(
φ

2

)
⎞
⎟⎟⎠ S (µ)2 (20)

and sinc (φ) � sin (φ)
φ

. From (14) and (19), the kinematics

of relative motion between the camera and the object can
thus be expressed as follows

ė = Jv + f (21)

where e(t) �
[

eT
v eT

ω

]T ∈ R
6, and v(t) �[

vT
r ωT

r

]T ∈ R
6. The vector f(t) ∈ R

6 and the matrix
J(t) ∈ R

6×6 in (21) are defined as follows

J =

[
− α1

m̄∗
1z

Ae1Rco
α1

m̄∗
1z

Ae1RcoS(s1)

03×3 −LωRco

]
, (22)

f =

[ α1

m̄∗
1z

Ae1S(xco)ωcc

03

]
(23)



where 03×3 ∈ R
3×3 denotes a 3 × 3 zero matrix, and 03 ∈

R
3 denotes a zero vector.
We assume that a single geometric length s1 ∈ R

3 between
two feature points on the object is known. This allows us to
compute x∗

co using the following alternative expression

x∗
co =

[
diag(γ̄1 − γ̄2) + R̄

]−1 [diag(γ̄1 − γ̄2)R∗
co − Rco] s1

(24)
where

γ̄1 = [diag (m∗
1)]

−1
n∗T m∗

1x̄h, (25)

γ̄2 = [diag (m∗
1)]

−1 m1

α1
(26)

and m1(t), m∗
1, n

∗, x̄h(t) and α1(t) are all measurable sig-
nals. Also, since m∗

1 = 1
m̄∗

1z
(x∗

co +R∗
cos1), m̄∗

1z and m̄∗
1 can

both be computed. From (4), (5), and the definition for x̄ h(t),
we can compute xco(t). Also, as mentioned previously, it is
assumed that the velocities vcc(t), ωcc(t) are available from
sensors on the camera. Hence, each element of J(t) and f(t)
given in (22) and (23) are known.

Remark 2: By exploiting the fact that µ(t) is a unit vector
(i.e., ‖µ‖2 = 1), the determinant of Lω (t) can be derived as
follows [16]

detLω =
1

sinc2

(
θ

2

) . (27)

From (27), it is clear that Lω(t) is only singular for multiples
of 2π (i.e., out of the assumed workspace). It can also
been seen that det(Ae1Rco) �= 0. Hence, the matrix J(t)
is invertible [11].

IV. RELATIVE VELOCITY ESTIMATION

In [20], a model-free estimator for asymptotic identifica-
tion of a velocity signal was presented, utilizing only the
measured position signal for estimation. Based on this work,
in [4], we presented a detailed analysis of the application
of this observer for estimation of the velocity of a moving
object in the field of view of a fixed camera. Specifically,
designating ê(t) ∈ R

6 as the estimate for the kinematic signal
e(t), the observer was designed as follows

.

ê �
∫ t

t0

(K + I6×6)ẽ(τ)dτ +
∫ t

t0

ρsgn (ẽ(τ)) dτ (28)

+(K + I6×6)ẽ(t)

where ẽ(t) � e(t)− ê(t) ∈ R
6 is the estimation error signal,

K, ρ ∈ R
6×6 are positive definite constant diagonal gain

matrices, I6 ∈ R
6×6 is the 6 × 6 identity matrix, t0 is the

initial time, and sgn(ẽ(t)) denotes the standard signum func-
tion applied to each element of the vector ẽ(t). The above
estimator is guaranteed to asymptotically identify the signal
ė(t) provided ė(t), ë(t),

...
e (t) ∈ L∞, and the gain matrix

ρ satisfies the inequality ρi ≥
∣∣..ei

∣∣ +
∣∣...e i

∣∣ , ∀i = 1, 2, ...6. It
is assumed that the relative velocity, acceleration and jerk
between the moving object and the camera are bounded,
i.e., v(t), v̇(t), v̈(t) ∈ L∞. Given these assumptions, the
structure of (22) and (23) allows us to show that the bounds

on ė(t), ë(t) and
...
e (t) are satisfied. Hence, based on the

analysis in [4],
.

ê (t) → ė(t) as t → ∞. Since J(t) is known
and invertible, the six degree-of-freedom relative velocity
between the object and the camera can be identified as
follows

v̂(t) = J−1(t)
( .

ê (t) − f(t)
)

(29)

and v̂(t) → v(t) as t → ∞.
Remark 3: The definition of relative velocity in (15) can

be expressed in the following equivalent form

vr = RT
covcc − voo, ωr = RT

coωcc − ωoo . (30)

Since we made the assumption that the camera velocity[
vT

cc ωT
cc

]T
is known, (28) and (30) allows us to recover

an estimate for the object velocity
[

vT
oo ωT

oo

]T
.

V. EUCLIDEAN STRUCTURE ESTIMATION

To facilitate the development of an estimator for Euclidean
coordinates of the feature points on the object (i.e., the vector
si relative to the object frame O, m̄i(t) and m̄∗

i relative to
the camera frame C for all i feature points on the object),
we first define the extended image coordinates pei(t) ∈ R

3

as

pei �
[

ui vi − ln(αi)
]T

(31)

From the development in the previous section for transla-
tional kinematics, the following expression for time deriva-
tive of the (31) can be obtained

ṗei = − αi

m̄∗
iz

AeiRcovr +
αi

m̄∗
iz

AeiS(xco)ωcc

+
αi

m̄∗
iz

AeiRcoS(si)ωr

= W1iVvwθi + W2i [θi]1 (32)

where W1i(·) ∈ R
3×3, W2i(·) ∈ R

3, Vvw(t) ∈ R
3×4, and

θi ∈ R
4 are as follows

W1i = −αiAeiRco (33)

W2i = αiAeiS(xco)ωcc (34)

Vvw =
[

vr S(ωr)
]

(35)

θi =
[

1
m̄∗

iz

sT
i

m̄∗
iz

]T

. (36)

In (32), the notation [θi]1 denotes the first element in the
vector θi. Note that in (32 ), we have linearly parameterized
the time derivative of the extended image coordinates in
terms of known or measurable quantities W1i(·) and W2i(·)
and the unknowns Vvw(t) and θi. An estimate for Vvw(t),
denoted by V̂vw(t), is available from re-arranging the vector
v̂(t) computed from (29). Our objective in this section is
to develop an estimator for the unknown constant θ i in (36)
which will allow us to compute the Euclidean coordinates of
the ith feature point on the object. To facilitate this objective,
the parameter estimation error θ̃i(t) is defined as follows

θ̃i � θi − θ̂i (37)



where θ̂i(t) ∈ R
4 is a subsequently designed parameter

update signal. Motivated by the subsequent stability analysis,
we introduce a measurable filter signal ζi(t) ∈ R

3×4, and an
un-measurable filter signal ηi(t) ∈ R

3 defined as follows

ζ̇i = −βiζi + W3i (38)

η̇i = −βiηi + W1iṼvwθi (39)

where βi ∈ R is a scalar positive gain, and Ṽvw(t) �
Vvw(t) − V̂vw(t) ∈ R

3×4 is an estimation error signal, and

W3i = W1iV̂vw +
[

W2i 03×3

]
. (40)

The stability analysis presented in the next sub-section
motivated the following design for estimates of the extended
image coordinates pei(t), denoted by p̂ei(t) ∈ R

3, and an
adaptive least-squares update law [18] for the Euclidean
parameters θi, as follows

.

p̂ei = βip̃ei + ζi

.

θ̂i +W1iV̂vw θ̂i + W2i [θi]1 (41)
.

θ̂i = Liζ
T
i p̃ei (42)

where p̃ei(t) � pei(t)− p̂ei(t) ∈ R
3 denotes the measurable

estimation error signal. Li(t) ∈ R
4×4 is an estimation gain

recursively computed as

d

dt
(L−1

i ) = ζT
i ζi (43)

and initialized such that L−1
i (0) > 0 to ensure that it is

positive definite for all time t as required by the stability
analysis. From (32) and (41), the time derivative of the esti-
mation error in extended image coordinates can be computed
as follows

.
p̃ei= −βip̃ei − ζi

.

θ̂i +W1iṼvwθi + W3iθ̃i. (44)

The above equation, and (39) allows us to develop an
alternate expression for p̃ei(t) as follows

p̃ei = ζiθ̃i + ηi. (45)

A. Stability Analysis

Theorem 1: The update law defined in (42) ensures that
θ̃i(t) → 0 as t → ∞ provided that the following persistent
excitation condition [18] holds

γ1I4×4 ≤
∫ t0+T

t0

ζT
i (τ)ζi(τ)dτ ≤ γ2I4×4 (46)

and provided that the gains βi satisfy the following inequal-
ities

βi > k1i + k2i ‖W1i‖2
∞ (47)

k1i > 2 (48)

where t0, γ1, γ2, T, k1i, k2i ∈ R are positive constants,
I4×4 ∈ R

4×4 is the 4 × 4 identity matrix, and the notation
‖.‖∞ denotes the induced ∞-norm of a matrix [18].

Proof: Let V (t) ∈ R denote a non-negative scalar function
defined as follows

V � 1
2
θ̃T

i L−1
i θ̃i +

1
2
ηT

i ηi. (49)

After taking the time derivative of (49), the following ex-
pression can be obtained

V̇ = −1
2

∥∥∥ζiθ̃i

∥∥∥2

− θ̃T
i ζT

i ηi − βi ‖ηi‖2

+ηT
i W1iṼvwθi

≤ −1
2

∥∥∥ζiθ̃i

∥∥∥2

− βi ‖ηi‖2

+ ‖θi‖ ‖W1i‖∞
∥∥∥Ṽvw

∥∥∥
∞

‖ηi‖
+

∥∥∥ζiθ̃i

∥∥∥ ‖ηi‖ − k1i ‖ηi‖2 + k1i ‖ηi‖2

+k2i ‖W1i‖2
∞ ‖ηi‖2 − k2i ‖W1i‖2

∞ ‖ηi‖2 (50)

where k1i, k2i ∈ R are positive constants as previously
mentioned. Further simplification of (50) after utilizing the
non-linear damping argument [13] results in the following
expression

V̇ ≤ −
(

1
2
− 1

k1i

) ∥∥∥ζiθ̃i

∥∥∥2

−
(
βi − k1i − k2i ‖W1i‖2

∞
)
‖ηi‖2

+
1

k2i
‖θi‖2

∥∥∥Ṽvw

∥∥∥2

∞
. (51)

The gains βi, k1i and k2i are selected to ensure that

1
2
− 1

k1i
≥ µ1i > 0 (52)

βi − k1i − k2i ‖W1i‖2
∞ ≥ µ2i > 0 (53)

where µ1i, µ2i ∈ R are positive constants. The above
gain conditions allow us to further upper-bound the time
derivative of (49) in the following manner

V̇ ≤ −µ1i

∥∥∥ζiθ̃i

∥∥∥2

− µ2i ‖ηi‖2 +
1

k2i
‖θi‖2

∥∥∥Ṽvw

∥∥∥2

∞
. (54)

In the analysis provided in the development of the kinematic
estimator in [4], it was shown that a filter signal r(t) ∈
R

6 defined as r(t) = ẽ(t)+
.

ẽ (t) ∈ L∞ ∩L2. From this
result it is easy to show that the signals ẽ(t),

.
ẽ (t) ∈ L∞

∩L2 [6]. Since J(t) ∈ L∞ and invertible, it follows that
ṽ(t) = J−1(t)

.
ẽ (t) ∈ L∞ ∩ L2. Hence it follows that∥∥∥Ṽvw(t)

∥∥∥2

∞
∈ L1 and∫ ∞

0

1
k2i

‖θi(τ)‖2
∥∥∥Ṽvw(τ)

∥∥∥2

∞
dτ ≤ ε (55)

where ε ∈ R is a positive constant. From (49), the integral
of (54), and (55), it can be concluded that∫ ∞

0

(
µ1i

∥∥∥ζi(τ)θ̃i(τ)
∥∥∥2

+ µ2i ‖ηi(τ)‖2

)
dτ

≤ V (0) − V (∞) + ε. (56)

Hence, ζi(t)θ̃i(t), ηi(t) ∈ L2. Also, from (56) and
the fact that V (t) is non-negative, it can be concluded
that V (t) ≤ V (0) + ε ∈ L∞. Therefore, from (49),
θ̃T

i (t)L−1
i (t)θ̃i(t), ηi(t) ∈ L∞. Based on the assumption that

the persistent excitation condition in (46) is satisfied, and
L−1

i (0) is chosen to be positive definite, we can use (43) to



show that L−1
i (t) is always positive definite; hence, it must

follow that θ̃i(t) ∈ L∞. Since W3i(·) in (40) is composed of
bounded terms, and is the input to the stable filter in (38), it
can be shown that ζi(t), ζ̇i(t) ∈ L∞ [6], and consequently,
ζi(t)θi(t) ∈ L∞. It follows from (45) that p̃ei(t) ∈ L∞,

and hence, from (42),
.

θ̂i (t),
.

θ̃i (t) ∈ L∞. Based on these

arguments, it is easy to see that d
dt

(
ζi(t)θ̃i(t)

)
∈ L∞.

Therefore, ζi(t)θ̃i(t) is uniformly continuous [7], and since
we also have that ζi(t)θ̃i(t) ∈ L∞ ∩ L2, we can conclude
the following result from Barbalat’s Lemma [7]

ζi(t)θ̃i(t) → 0 as t → ∞. (57)

If the signal ζi(t) satisfies the persistent excitation condition
given in (46), then it can be concluded [18] from (57) that

θ̃i(t) → 0 as t → ∞. (58)

�
Remark 4: From (7), (9), (36), (42), and Theorem 1, the

constant Euclidean position of all feature points on the object
at the reference position, and the time varying Euclidean
position of the feature points on the moving object relative
to the camera can be computed as follows

ˆ̄m∗
i (t) =

1[
θ̂i(t)

]
1

A−1p∗i (59)

ˆ̄mi(t) =
1

αi(t)
[
θ̂i(t)

]
1

A−1pi(t). (60)

VI. CONCLUSIONS

This work developed a technique for the recovery of struc-
ture and motion for the general case where both the object of
interest as well as the camera are in motion. Homography-
based techniques and adaptive estimation theory provided the
basis for the estimator design. Future work will include the
validation of the proposed estimator through simulations and
experiments. The applicability of this work for tasks such
as aerial surveillance of moving targets is well motivated
since no explicit model describing the object or its motion
is required by the estimator.
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APPENDIX I
DEVELOPMENT OF TRANSLATION AND ROTATION

KINEMATICS

To facilitate the development of the kinematic equations,
the following properties of rotational matrices and skew
symmetric matrices are utilized [19]

Ṙc = RcS(ωcc) (61)

Ṙc = S(ωc)Rc (62)

Ṙo = S(ωo)Ro (63)

S(u)ζ = −S(ζ)u (64)

S(Ru) = RS(u)RT (65)

where R(t) ∈ SO(3) is a rotation matrix, u(t), ζ(t) ∈ R
3

are some arbitrary vectors, and the rest of the terms were
defined previously.

To develop the translational kinematics, the time derivative
of (13) is obtained as follows

ėv =
α1

m̄∗
iz

Ae1

.
m̄1 (66)



From Figure 1, the position and orientation of the object
relative to the camera are as follows

xco = RT
c (xo − xc) (67)

Rco = RT
c Ro. (68)

After taking the time derivative of the above equations, and
utilizing the properties in (61) to (65), we have

ẋco = S(xco)ωcc + RT
c (vo − vc) (69)

Ṙco = RT
c S(ωo)Ro − RT

c S(ωc)Ro. (70)

Utilizing (69) and (70), the expression for the time derivative
of (1) for i = 1 is given by the following expression

.
m̄1= S(xco)ωcc − Rcovr + RcoS(s1)ωr. (71)

After substituting (71) in (66), the translational kinematics
in (14) can be obtained.

The development of rotation kinematics follows the de-
scription given in [16], to which the reader is referred to
for details. Only a brief description is given here. We define
ω̄(t) ∈ R

3 to be the relative rotational velocity between the
frames O∗ and O as observed by the camera. Then it can
be shown that [19] .

R̄= S(ω̄)R̄. (72)

The open-loop error system for eω (t) is derived based on
the following exponential parameterization [19]

R̄ = I3×3 + S(µ) sin(φ) + 2 sin2(
φ

2
)S(µ)2 (73)

where I3×3 is the 3 × 3 identity matrix. Using (73) and its
time derivative in (72), it can be shown that

S(ω̄) = sin(φ)S(µ̇) + S(µ)φ̇ + (1 − cos(φ)) S(S(µ)µ̇).
(74)

To facilitate further development, the time derivative of (17)
is determined as follows

ėω = µ̇φ + µφ̇. (75)

By multiplying (75) by
(
I3×3 + S(µ)2

)
, the following ex-

pression can be obtained(
I3×3 + S(µ)2

)
ėω = µφ̇ (76)

where we utilized the following properties

µT µ = 1, µT µ̇ = 0 (77)

S(µ)2 = µµT − I3×3 (78)

Likewise, by multiplying (75) by −S(µ)2 and then utilizing
(77), the following expression is obtained

−S(µ)2ėω = µ̇φ. (79)

From the expression in (74), the properties given in (64),
(75), (76), (79), and the fact that

sin2(φ) =
1
2

(1 − cos(2φ)) ,

we cab obtain the following expression

ω̄ = L−1
ω ėω (80)
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Fig. 2. Estimation error in the coordinates of a feature point on the object
(fixed camera, 1% pixel noise added).

where Lω (t) is defined in (20). From (72), (4), (68), and the
properties in (62) and (63), it can be shown that

ω̄ = −Rcoωr (81)

where ωr(t) ∈ R
3 was defined in (15). After multiplying

both sides of (80) by Lω(t), and utilizing (81), the rotational
kinematics given in (19) can be obtained.

APPENDIX II
SPECIAL CASES: A FIXED CAMERA, OR A FIXED OBJECT

In the previous sections, we presented the development
for the general case where both the camera and the object
are in motion relative to an inertial frame. As described in
Sections IV and V, such a treatment imposed a few restrictive
assumptions on the system, chief among them being that
the persistent excitation condition of (46) was satisfied
at all times, the camera velocity

[
vT

cc(t) ωT
cc(t)

]T
was

measurable, a single position vector s1 was known, and the
orientation of the object at a reference position relative to
the camera (R∗

co) was known. The fact that s1 and R∗
co

was available enabled us to compute the depth information
m̄∗

iz and the position vector xco(t), apart from the rotation
matrix Rco(t). As shown below, for the special cases where
either the object or the camera are stationary, some of these
requirements can be relaxed, increasing their potential for
application in a wider range of real-world scenarios. These
cases are derived in detail in [3], and here we present a
summary.

1) Fixed Camera: When the camera is fixed relative to
the inertial frame, the kinematics expression in (21) is given
by

ė = Jfcvoo (82)

where Jfc(t) ∈ R
6×6 is the following

Jfc =

[ α1

m̄∗
iz

Ae1Rco − α1

m̄∗
iz

Ae1RcoS(s1)

03×3 LωRco

]
. (83)



The time derivative of extended image coordinates in (32)
reduces to the expression given below

ṗei = W1iVvwθi (84)

where W1i(·) = αiAeiRco ∈ R
3×3 and Vvw =[

voo S(ωoo)
] ∈ R

3×4. All assumptions and requirements
are the same as in the general case, except that the estimation
of the object velocity and structure relative to the fixed
camera requires no additional sensors on the camera (since
ωcc(t) = 0), and the computation of the position vector
xco(t) is not required. As an example, Figure 2 shows the
errors in the estimation of the Euclidean coordinates of one
of the features points, in the simulation of a planar object
moving in the field of view of a fixed camera.

2) Moving Camera: With the object stationary relative to
the inertial frame, the kinematics of the moving camera can
be expressed as follows

ė = Jmcvcc (85)

where Jmc(t) ∈ R
6×6 is the following Jacobian-like matrix

Jmc =

[
− α1

m̄∗
iz

Ae1 Ae1S(m1)

03×3 −Lω

]
. (86)

In the above expression, notice that all terms are either
known apriori, or directly measurable, except the constant
depth m̄∗

iz. If the camera can be moved away from its
reference position by a known translation vector x̄k ∈ R

3,
then m̄∗

iz can be computed offline without the knowledge of
R∗

co and s1. Decomposition of the Euclidean homography
between the normalized Euclidean coordinates of the feature
points obtained at the reference position, and at x̄k away
from the reference position, respectively, can yield the scaled

translation vector
x̄k

d∗
∈ R

3. Then, it can be seen that1

m̄∗
iz =

d∗

n∗T m∗
1

=
d∗

n∗T A−1p∗1
. (87)

Hence, from the above discussion, we note that it is possible
to develop a velocity estimator for the moving camera case
without having to know the reference orientation matrix R ∗

co

and any geometric length s1 on the object. However, as a
consequence of the specific approach we have employed
in the development of the Euclidean estimator in Section
V, we are unable to benefit from this relaxation in the
assumptions for velocity estimation. In [3], we formulate
the Euclidean estimation in a slightly different manner that
allows us to eliminate the requirement of R∗

co and s1; i.e.,
the time derivative of the extended pixel coordinates in (32)
is expressed as

ṗei = W1ivccθi + W2iωcc (88)

1Note that for any feature point Oi coplanar with π∗, m̄∗
iz could be

computed this way.

where W1i(·) ∈ R
3×3, W2i(·) ∈ R

3×3, and θi ∈ R are
defined as follows

W1i = −αiAei (89)

W2i = AeiS(mi) (90)

θi =
1

m̄∗
iz

. (91)

A measurable filter signal ζi(t) ∈ R
3, similar to (38), is now

defined in the following manner

ζ̇i = −βiζi + W1iv̂cc (92)

where v̂cc(t) ∈ R
3 is the estimate for translational velocity

of the camera. In [3], following an approach similar to that
presented in Section V, it is shown that the depth parameters
θi can be estimated using the adaptive least-squares update
law of (42), and subsequently, the Euclidean position of all
feature points on the object relative to the camera can be
estimated. Again, the need for additional on-board sensing
is eliminated. Also note that as a consequence of the way
the filter signal ζi(t) in (92) is formulated, the persistent
excitation of (46) is also simplified, as it now depends only
on the translational velocity signal.


